Закритий

Python Implementation of Logistic Regression and Naive Bayes Algorithms -- 2

Цей проект отримав 1 заявок від талановитих фрілансерів з середньою заявкою у $25 USD.

Отримайте безкоштовно цінові пропозиції на схожі проекти
Роботодавець працює
Бюджет проекту
$10 - $30 USD
Усього заявок
1
Описання проекту

(a) Logistic Regression. Report the accuracy on the test set. Vary the learning rate (η) and report the results for 3 different learning rates. Report the confusion matrix on the test set. Since this requires a k-class logistic regression, predict if the class is 1 or not.; to achieve this, create a new version of the data set where for all the examples where the class label is not 1, you assign a new class label (say 0). Thus now your binary task is predicting whether class 1 is true or not. Do the same for the test set as well. 


(b) The counting based Naive Bayes classifier: Assume Laplacian correction. Again, treat the task as binary and report the results as a confusion matrix. 


Data: from the UCI Zoo data set (zoo-train and zoo-test). There are 16 features (the first 16 columns) and the class labels are in the last column. There are 7 classes (numerically specified as class 1 to 7). All features are binary except for feature 13, which is a categorical variable with possible values 0,2,4,5,6,8. Note that to create binary split, please use the one-vs-rest approach.

Хочете заробити?

  • Визначте бюджет та часові рамки
  • Виділіть Вашу пропозицію
  • Отримайте оплату за Вашу роботу

Найняти фрілансерів, які також подавали заявки в цей проект

    • Forbes
    • The New York Times
    • Time
    • Wall Street Journal
    • Times Online